
Exponential potential and mass dependence of wavefunctions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 L137

(http://iopscience.iop.org/0305-4470/13/5/004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) L137-L140. Printed in Great Britain 

LETTER TO THE EDITOR 

Exponential potential and mass dependence of 
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Abstract. We derive exact s-wave orthonormal eigenfunctions for an exponential potential 
in the non-relativistic case and show that the condition G(r)  a 0 for r 3 0 where 

does not hold in general. 

1. Introduction 

After the discoveries of bound states like the +/J and y particles many workers (for a 
brief review see Quigg (1978)) have attempted to describe the spectrum of the new 
particles with the help of various potential models. Mass dependence of Schrodinger 
wavefunctions is of considerable interest in these studies. Recently Leung and Rosner 
(1979) studied mass dependence of wavefunctions in the non-relativistic case for some 
types of potentials. For a power law potential of the type V(r )  = r‘ (and also for the 
logarithmic potential) mass dependence of the wavefunctions and energies (see Cocconi 
(1978)) can be found out easily by using simple scaling arguments. However, for a 
potential which is a transcendental function of r, such scaling arguments do not hold 
universally. Hence mass dependence of wavefunctions for some well known monotonic 
potentials like eWrIa (the exponential type), eWkr/r (Yukawan) or Alcos h2ar  (modified 
Poschteller) cannot be determined in a trivial manner. 

In this Letter we have derived exact s-wave orthogonal eigenfunctions for an 
exponential potential in the non-relativistic case and have shown that the condition 
G(r)  a 0 for r L 0, where 

G(r)=--]  l a  (u(r))’dr, 
2am 

does not hold in general. 

2. Solution of Schrodinger equation 

The exact s-wave solutions of the Schrodinger equation for an exponential potential are 
well known. However, for the sake of completeness, we present here the essential 
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steps. As usual we write the radial part of the s-wave Schrodinger wavefunction $ ( r )  as 

$ ( r )  = U(r ) / r  (1) 

u " + 2 p ( E  - V ( r ) ) u  =: 0. (2) 

where the radial wavefunction u ( r )  satisfies the differential equation (taking h = 1 )  

If we consider the equation for a bound state then p is the reduced mass and p = m / 2 ,  
where m is the mass of any of the constituent particles assumed to be of equal masses. If 
we take 

V ( r )  = A  e-kr (3) 

v " ( z ) + ( 4 m / k 2 ) ( E - A  e'')u(t) = 0 ( 4 )  

then ( 2 )  can be written as 

where u ( r )  = v ( z )  and z = - kr/2.  The solution of ( 4 )  is given by 

U ( r )  = U ~ J " ( X  e+/') 
where 

v2  = - 4 m E / k 2 ,  A 2  = - 4 A m / k 2  

and a. is a normalisation constant to be determined from the relation 

\om ( u ( r ) ) 2  dr = 1 .  

Eigenvalues are obtained from the boundary condition 

J , ( A )  = 0. 
Now 

2 l  
k 10 \om J,(A e+'')J,(A dr = - J,(At)J,(At)t-' dt. 

(7) 

( 9 )  

The RHS of ( 9 )  can be evaluated by using the explicit expressions for integrals like (see 
Luke (1962) equations (3)-(6))  

\' z - ' J , ( A z ) J , ( A z )  dr. 

After some straightforward calculation, we see that the RHS of ( 9 )  is equal to zero if 
p # U, and for p = v 

1 j0 (Jy(At))2t-1 dt  = "( J v + 1 y )  
2v  

where we have also used the result (8). 
Hence orthonormal eigenfunctions for an exponential potential are given by 

U ,  = a, ( V ) J ~ "  (A (1 1) 
where v, is the value of v corresponding to the n th zero of J , ( A )  for fixed A. a, is given 
by 
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where 

The normalisation constant given by (12) is, to the best of the author’s knowledge, not 
given elsewhere. As is well known, in a bound state potential model, the decay width r 
is proportional to ($(0))2 (see Quigg and Rosner (1978)). 

To derive l$(0)l2 we use 

1$(0)l2 = (m/47r)(d V/W. (14) 

Now (z) = - kaz Iom (J,(A e-kr/2))2A eCkr dr 

1 

= 2aiA \o (JY(At))’t dt 

= -&AJ,-~(A)J,+~(A) (15) 

where we have used (Luke 1962, equations (3)-(6)) the explicit expression for 

1‘ tJ,(kt)J,(Rt) dt 

Using the properties of Bessel functions, 
and equation (8). 

(dV/dr,) = Au~(J:(A))~. 

Hence 

19(0)12 = (a&’W47r)(JXA)l2. 

Let us now calculate P(r)  defined by 

P(r)  = [r(u(r))2 dr 
0 

1 

k e - k r / 2  
= 1. \ a~(J,(At))2t“1 dt 

(Jy(Ar))2t-1 dt. 2 ’  
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If dP(r)/dm 9 0 ,  then P ( r )  is monotonically increasing, hence f ( m ,  r )  must be a 
monotonically decreasing function of m. We show that this cannot be true except in the 
case when A is the lowest zero (excluding A = 0) of .J,(A). This follows from the interlace 
properties of the zeros of Bessel functions. (For the following discussions, we assume 
that A > 0, v > 0.) For a higher-order zero of J,(z), there is a value of r > 0 for which 

J ,+~(A = 0. (23) 
Hence f ( m ,  r )  = 0. 

For example if 

m = j ; , ,k2 /4A (24) 

then 

J , + ~ ( A  = o 
for 

kr = 2111 ju,nljv+i,n-i (26) 

where j,,, is the nth zero of J,,(z). The above result follows from the ‘interlace’ 
properties of j,,,,, 

jy. l  <j,,+i,i < j Y , 2  . . . <jv+i. ,- i  <jY,,. (27 )  

3. Conclusion 

The condition G(r)  a 0, 0 G r < cy) is a quantitative statement that the bound particle 
‘falls deeper into the well’ (as was pointed out by Leung and Rosner (1979)) as 
increases. As shown by us this condition fails to hold in case of an exponential 
potential. Our investigation was limited to the case v > 0, A > 0. When both v and A 
become purely imaginary, i.e. A > 0, E > 0, the investigation becomes very much more 
difficult as little is known about the properties of complex roots of Bessel functions with 
complex arguments. But our results up to equation (22) hold good for any Y and A. 

References 

Cocconi G 1978 Comm. Nucl. Particle Phys. VI1 6 177 
Leung C N and Rosner J 1979 J. Math. Phys. 20 1435 
Luke L Y 1962 Integrals of Bessel Functions (McGraw-Hill) p 254-5 
Quigg C 1978 Lectures on charmed particles, Fermi Lab. Conf. 78/137THY 
Quigg C and Rosner J 1978 Comm. Nucl. Particle Phys. VI11 1 21 


